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Fine structure of the Bethe ansatz for the spin-: Heisenberg 
X X X model 

Fabian H L Essler, Vladimir E Korepin and Kareljan Schoutens 
Institute for Theoretical Physics, Slate Univemily of New York at Stony Brook, Stony 
Brook, NY 11794-3840, USA 

Received 18 November 1991. in final form 20 March 1992 

Abstract. We analyse the Bethe ansalz equations for the two-particle sector of the 
spin-; Heisenberg X X X  model on a one-dimensional lattice of length N .  We show 
that. beginning at a critical lattice length of N = 21.86. new pairs of real solutions 
develop, whereas complex solutions star1 to disappear. 'Ibe integers (that appear in 
the logarithmic form of the Bethe equations) of the o w  solutions do not fit inlo the 
conventional classification scheme. The total number of solutions in the two-particle 
sector remains unchanged and is i n  agreement with the claim that the SU(2) extended 
Bethe ansatz gives a complete set of ZN eigenstates. 

1. Introduction 

The one-dimensional isotropic spin-f Heisenberg magnet (XXX spin chain) was 
the first model solved by means of the Bethe ansatz method [l]. The model de- 
scribes interacting spins, situated on the sites of a periodic lattice of length N .  The 
Hamiltonian is given by 

',+I = '1 

where 2S, are the Pauli matrices. The Bethe ansatz provides the following set of 
eigenfunctions 

I Q ) =  Q(Z1,Z2 ,..., zM)s;,s;2...s- =M I 0 )  
= , < . 1 < . . . < = h l  

Here 10) is the ferromagnetic state with all spins up  and A4 is the number of over- 
turned spins. The wavefunction is symmetric under interchange of any two of the 
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coordinates z, and IC,, . . . , kM E [ 0 , 1 ~ ]  are the spectral parameters, P is a per- 
mutation of M elements, and q5,jl is defined by 

2 cot  (V) = cot (%) - cot ($) . (3) 

Imposing the periodic boundary conditions 

q ( T l r + ~ r . .  . Z M - ~ ,  N t 1) = Q ( 1 3 Z 1 , Z z 3 . .  . , 2 ~ - 1 )  (4) 

leads to the following set of Bethe equations for the spectral parameters ICl ,  . . . , I C ,  

The usual parametrization for the Bethe equations and eigenfunctions is obtained by 
the substitution 

A j  = cot(kj/’2). (6) 

in  this parametrization we hnd that 

and the Bethe equations take the form 

A + i  
. (A)  = - 

A - i ‘  

The energy of the state (7) is given by 

-25 M 
E ( A l , .  . . . A M )  = E- 

j = 1  A ; + l ’  (9) 

One fundamental assumption in investigating solutions of (8) is the so-called string 
hypothesis [l-31, which states that in the large N limit (for fixed M), any solution 
A l ,  . . . , A M  of (8) consists of a set of strings of the form 

A ~ ” = A : : + i ( n + 1 - 2 j ) + O ( e - 6 N )  j = l , 2 ,  ..., n (10) 

where R 2 1 gives the length of the string, a labels different strings of a given length, 
j specifies the imaginary part of A (A; denotes the real part of A;,’) and 6 > 0. 
The total number of strings of length n is denoted by M,,. Assuming the validity of 
this hypothesis, it is possible to reduce the Bethe equations (8) to a set of coupled 
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equations involving only the real parts A,". The logarithmic form of these equations 
is given by [2, 41 

NO = 2 n I E +  O n ~ , , ( A ~ - A ~ )  (11) 

e(x) = 2arctan(x)  (12) 

(3 ( m , P ) # ( n l a )  

where 

and 

+ 28  (&) + Q (&) if n = m. (13) 

Solutions of (11) are parametrized by integer (for N - M ,  odd) or half odd integer 
(for N - Mn even) numbers I,", which are distributed symmetrically around zero 
and should satisfy 

where t",,, = 2 Min(m, n)-6m,n. It is generally believed that there is a one-to-one 
correspondence between solutions of the Bethe equations and sets of independent, 
non-repeating integers I,". (By this we mean that I," # I; for a # p, such that 
no two strings of the same length n have the same integer.) This is essential for 
all prooEs of completeness of the (SU(2)extended) Bethe ansatz solutions for the 
Heisenberg X X X  model [1-4]. 

sector. We find that counting the solutions of (8) using the integer method (based on 
the assumption that all strings are of the form (10)) [24 ]  yields an incorrect result 
for lattice lengths N greater than Ncrlt = 21.86. For N > N,,,, there exist less 
complex string solutions than those predicted by counting the integers according to 
(14). These 'missing' strings are replaced by additional real solutions, which can be 
characterized by a pair of repeating integers. The total number of solutions thus 
remains unchanged, whereas their nature changes drastically. The change in type of 
solution t o  the Bethe equations had already been noticed by Bethe himself in 111 but 
for some reason has been overlooked in the more recent literature. 

In section 2 we will give a graphical method for finding all complex two-particle 
solutions of the Bethe equations (8) and in section 3 we will apply a similar method 
to determine all real solutions in the two-particle sector. We will find a new type of 
real solution that is not present in the clasification scheme based on (14) (and the 
assumption of non-repeating integers). In section 4 we classify the new type of real 
solution in the large N limit and show that the number of new solutions is of order 

:E ikk paijei we iilvesrigaie va~&ry. of tf,ese ass.uiiipi,oEs iE tk,e cwG-paitic;e 

AV. 
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2. String solutions of the Bethe equations in the two-particle sector 

Due to the symmetry of (8) under complex conjugation, complex solutions A1, ,I2 
must be of the form A, = (A2) * ,  where * denotes complex conjugation. This enables 
us to reduce the Bethe equation (8) to a single equation in the variables x and y 
with A1 = x + iy : 

F H L Essler et a1 

r + i ( y + 1 ) \ " -  Y + I  I i .  . --. 
\ ~ + 1 ~ ! 4 - 1 j )  Y - 1  

Dividing (15) by its conjugate equation we obtain 

(16) 

After taking the logarithm this yields the analogue to (11) for arbitrary string width 
Y: 

Clearly this reduces to (11) for y = 1. The cut of tan-'(z) has been chosen from i 
to icc and from -i to -icc along the imaginary axis. Note that I: is integer (half 
odd integer) for even (odd) lattice length N .  Xiking the magnitude of (15) we arrive 
at 

The curve B,  that solves (18) has two branches as shown in figure 1 and includes 
the whole x-axis (y = 0) as well. The 'inner' branch intersects the x-axis for N B 1 
at 

The 'outer' branch has the asymptotes [5] 
x(1) = f d m .  (19) 

1 
J p C i j X .  

y = f  

Figure 1. The cuwe BN for N = 5 
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To obtain solutions of (15) we also have to discuss the phases. Noting that the 
right-hand side of (15) is real we can write 

where T E [O,cm). %king the Nth  root of this equation we arrive at 

r m = 0,1, ... , 2 N  - 1. (22) - - @ % z / N  + i ( y -  1 )  
We denate the solutions of (22) without resfriciion on r for given m by C,. Looking 
at (21) we see that there is a constraint on the allowed range of r in (22). Even 
(odd) m correspond to the + (-) sign on the right-hand side of (21) and thus to 

only points (2, y) that lie on IC, are solutions of (21). 
(y (  > 1 (I?! < I). n.& cnnstraint se!ects 2 c" part Km nf !he E""e c, and 

A parametrization of C, is given by 

where r E [O,co). The constraint mentioned earlier has to be imposed on these 
solutions. The curves C,,, intersect the z-axis at ( r  = 1) 

x:) = & c o t ( n m / 2 N ) .  (24) 

Solutions of the Bethe equations (15) are given by intersection points of the 
curves IC, with the  curves B,. In figures 3 and 4 we show the resulting curves for 
lattice lengths N = 5 and N = 21. lnspcction of figure 3 shows that there exist two 
string solutions on the lattice with five sites. This is in agreement with the counting 
according to (14). Numerically one finds two string solutions with spectral parameters 

A2.1 I - - -0.G3 f 1.04i = - A i B 2  
') 1 (25) 

Ai '2  = -0.63 - 1.04i = -A;' 
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which is in perfect agreement with figure 3 and the standard string picture. We see 
that for even and sufficiently small N every curve Km with 1 < m < N/2 and 
3N/2 < m < 2N - 1 has exactly two intersection points with B,, which leads to 
one string solution for any such m and, in addition, we have one string solution at 
zero (z,y) = ( O , + i ) ,  which can be shown to correspond to the wavefunction 

F H L Essler el a1 

(Clearly this state only makes sense on a lattice with an even number of sites.) This 
gives a total of N - 3 solutions. 

For odd and small enough N every curve Km with 1 < m < ( N  + 1 ) / 2  and 
with (3N - 1) /2  < m < 2 N -  1 gives one solution which also adds up to a total of 
N - 3. 

Using the standard string counting (14) we find that IZ:l < ( N  - 4) /2  which 
leads to a total of N - 3 solutions for N either even or odd. Thus one would think 
that (14) indeed predicts the correct number of solutions to the Bethe equations. 
This is not true, however, as can be seen in figure 5 which shows all string solutions 
for N = 25. Clearly the curves li3 and IC,, do not lead to any intersection points 
and we are thus !eft with a rota! of 2.5 - 5 = 20 solutions, two less than predicted 
by (14). The situation for 21 sites (see figure 4) is different, because the curves li, 
and ICs9 still intersect with the curve B,, (although the width of the corresponding 
strings is visibly much smaller than the 'ideal' value of 2). 

Thus the following picture emerges: The strings corresponding to intersection 
points of IC3 and ICzN-3  with B, get narrower and narrower until they disappear 
for N > 22. We find that for 22 < N < 61 there are only N - 5 string solutions to 
the Bethe equations. Starting at N = 62 we 'lose' an additonal two solutions. Using 
(19) and (24) we see that  whenever 1z$? 3 Id1)\ for any odd m with 3 < m < [N/2] 
(where [ z ]  denotes the integer part of z ) ,  we lose two string solutions of the Bethe 
equations, i.e. we find (an additional) two fewer solutions than predicted by (14). 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I l / , I , ( , ,  , ', 
E I 

- : L A 4  ~" -4 -3 -2 

Figure 3. String solutions lor  lattice length N = 5. 
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. 

t I 
5 

-5 c 1 

Figure 5. String solutions for N = 25. 

3. Real solutions of the Bethe equations in the two-particle sector 

The Bethe equations (5) in the two-particle sector are of the form 

and 

eik?N - - eid2.1 

(27) e i ( k l t k x ) N  = 1 

where @ l , 2  is given by (3) and the second equality is obtained by multiplying the 
equations for k, and k,. 'Ihking the logarithm and solving for k, one arrives at 

I r ~  = 7 , - d - 1 ( c e ~ ( ~ 2 / 2 )  - 2cot(l.z.rq/?)) 
' "1 - -.'-" 

(28) k , = - k 2 + ( 2 d / N ) m o d 2 ~  1 = 1 ,  . . . ,  N .  

Plotting k, as a function of k, and taking into account that the ks range between 0 
and 27,  one arrives at the graphs shown in figurcs 6 and 7 for N = 4. 
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Fkure 6. Plot of kl  = -k2 + 2 n l / N  mod 2 r  
against k? tor N = 4. 

Figure 7. Plot at lil = 2cot-’(cot(k2/2) - 
2 c o t ( k 2 N / 2 ) )  against k2 tor N = 4. 

The real solutions of the periodic boundary conditions for two particles are given 
by the intersection points of the graphs in figures 6 and 7. It is a well known fact 
that the wavefunction (2) vanishes if any two spectral parameters coincide (‘Pauli 
principle’). Therefore we can ignore intersection points on the line IC, = IC,, and, 
due to the symmetly of the problem under interchange of k, and k,, restrict our 
attention to the region k, > i,. The requirement Of all As to be finite 12, 31 leads to 
the exclusion of the axis k,  = 0. Figure 8 shows the resulting graph for N = 4, and 
we can clearly identify one solution, as predicted by the integer method ((14) gives 
11A1 < 3 4  - 2 - 1) = $ and thus there are the two permitted values i1 for the two 
integers I:>29 thus one solution). 

The qualitative behaviour of the graphs remains unchanged for N < 21 and 

close investigation of the situation for a larger lattice length like N = 25 reveals an 
interesting development, however. The dotted line in figure 9 is the line k, = IC,. 
As mentioned earlier there is a clear symmetry in the graph with respect to the 
interchange of IC, and IC,. Due to this symmetry and the ‘Pauli principle’ (the 
vanishing of the wavefunction for k: = k2!  we bnly have to consider the region 
below the dotted line in figure 9. As can be Seen in figure 9, the line with l = 3 
of (28) approaches the cot-’ curve rather closely in the regions k,  sz k, sz 0.4 and 
IC, FZ k, sz 5.9. 

the integer method predicts the right number, which is (“;2>, of solutions. A 

h, hl 

Flgurc S. Real solulioiis for N = 4. Figure 9. Real solulions for N = 2 5 .  
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Magnification of these regions reveals that instead of one intersection point with 
IC, = IC, (as was the case for N < 21), there now exist two additional intersection 
points (related by the interchange k ,  ++ IC,, so that we must count only one Of them) 
in each region (see figure lo), so that we obtain a total of 255 real solutions. The 
integer method predicts two real solutions less, as (14) gives IIAl < $(25-2-1) = 11 
and thus there are 23 permitted values for I t ,2 ,  which leads to (7) = 253 sohtions. 

A numerical solution of the Bethe equations (8) for N = 25 (see appendix I) is 
in  complete agreement with the situation described here and the new solutions are 
indeed found in the regions predicted by the graphical method. 

The critical lattice length NCri,, for which new solutions start to appear is found 
by equating the first derivatives of the two intersecting curves. The numerical value 
is found to be NCri, = 21.86. From figure 9 it becomes clear that for large lattice 
lengths N further additional solutions will develop, as the situation that occurs for 
the second 'branch' of the cot-' curve and the line with I = 3 at NCrit = 21.86, 
will eventually have an analogue in the third, fourth, etc, 'branch' of the cot-' 
curve. Numerical studies reveal that the next two additional real solutions appear for 
N = 61.34 (the line with 1 = 5 intersecting the third branch of the cot-' curve). 

\ 46.1 

kl 

Figure 10. Magnificalion of lhe 
upper right-hand comer of fig- 
ure ¶. 

4. Large-N analysis 

The new real solutions always develop in the vicinity of the curve IC, = 12,. Therefore 
one can solve the equations (28) perturbatively in powers of 1 / N  around this line. 
n..,. <..A" *I...* c-- - "L."" nr 
v i i c i  UUYJ L u a L  I V I  a grv=r& i v  

n = 2 . 3 , .  . . ,nmax 

where [ z ]  denotes the  integer part of 2. This means that there exist n,!,, - 1 pairs 
of new real solutions for a given N .  The 'critical' lattice length, at whlch new redl 
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solutions of the form (29), with parameter n, first develop is given by the solution of 
the equation 

F H L Essler et a1 

Perturbatively one finds that 

(31) 
N(n) - 2 1 2  (n - ?) ’ CPl t  - 

The results for n = 2 , 3  are in very good agreement with the numerically found 
values given earlier. Using (6), (11) and (29) we can compute the integers for the 
new real solutions. Elementay calculations yield for the solution with parameter n 

(32) 

Thus the new real solutions are characterized by a pair of repeating integer numbers. 
This is a new phenomenon, which contradicts the usual assumption that all integers 
are independent and non-repeating. 

5. Conclusions 

In this paper we have shown that the total number of solutions of the Bethe equations 
in the two-particle sector is in agreement with the result obtained by counting integers 
according to (14) as carried out in [2-4]. We saw, however, that the integer method 

Furthermore we demonstrated that the ‘Pauli principle for the integers’, i.e. the 
assumption that all solutions of the Bethe equations can be characterized by a set 
of independent non-repeating (half-odd) integer numbers, is invalid. The new states 
we found are described by two identical integers and the physical effects of such 
excitations above the ferromagnetic vacuum can be studied along the lines described 
in [6] .  

:-:‘S. tD predict the CD::eCt d3,t:ibction of so!utinss. a-ong rea! and ca-p!ex so!stions. 
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Appendix. Some numerical results for N = 25 

In this appendix we give parts of the numerical solution of the Bcthe cquations in 
the two-particle sector. Thble 1 lists the two additional real solutions as well as their 
integers, which are found to be repeating. ’Pdble 3 lists all (CompkX) string solutions 
together with their integers. We find that the solutions with ‘integer’ *9.5 are missing. 
Bbles 2 and 4 give samples of the  numerical results Cor the ‘regular’ real solutions 
and the corresponding intcgers. 
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6.076 130351764672 4,604119967471 151 (U, 11) 
-6.076 130351764672 -4.604 119967471 151 (-11, -11) 

Table 2. Real solutions with integers of the form ( - I ; ,  I : )  

- n . 1 3 1 6 s 2 w 1 ~ 9 n n n  u . 1 3 1 h 5 2 ~ 8 3 1 s ~ n n n  ( - I I Y Y Y Y Y Y ~ . O . Y ~ ~ ~ Y ~ ~ J  

- 0 s 7 7 ~ ~ 0 2 7 1  ICII~O,I ~ ~ 7 7 3 ~ ~ 2 7 1  i n i m  (-4.4) 

- 1  3U3225372841047 I 3 ~ 3 2 2 ~ 3 7 2 n ? 1 ~ 4 7  (-7.7) 

-0.267YdY 2117552647 020794Y2U7552 h47 ( - 2  IIUUM1.2.UU011110 I) 
-0414213551923667 0.414 213554923hh7 (-3,)) 

-1l.7h732h9877.12 179 0.76732h9877.12 179 (-5.5) 
- 1 .UUU UUUIJUUOIO 94 I ( -6 .  h J 

- I 732 05Ud07 568Rnb ( - 8.8) 
-2.4 I 4  21 3Sh? 37311Jh (-V.9) 
- 3  732U5U8U75h8034 3 73205U807Shhh34 (-Y,9, 
-7.SY5754112725 h38 7 SY5 751 11272Sh3X (- II. II) 

I UUU UUU(1U0011l94 I 

1.732 11508117 SOX hXd 
2 4 I 4  2 I3Sh2 373UL6 

Table 3. Spectral parameters and integers of the String solutions. 
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Table 4. Real solutions with one integer (but not both) equal l o  11. 

a: 4 (I;31;) 

2.660818949240510 6.937 316 937832 509 (10.11) 
1.884097488224177 7.077265200079445 (9 , l l )  
1.416020427893359 7.142422144443372 (8, l l )  
1.092353837732522 7.181 455030337 195 (7 , l l )  
0.848008820447725 7.208239378457300 (6,I l )  
0.65 1308 925902454 7.228 334 310008 103 (5, 11) 
0.484695845 133505 7.244430628292553 (4,11) 
0.337407004916716 7.258009100128 192 (3,l l)  
0,202216795 753 967 7.269 970 770 157 027 (2.11) 
0.073793040214152 7.280916005878645 (1, l l )  

-0.052243320518647 7.291284166897977 (0,ll) 
-7.595754112725 151 7.595754112725 151 (-11% 11) 
-3.784235077366884 7.492364916365747 (-10,ll) 
-2.468071 197228016 7.438644066117615 (-9,l l)  
-1.782616957891460 7.404677027965097 (-8,l l)  
-1.350629918256678 7.380566510373989 (-7,l l)  
-1,045 151822554743 7.362036505894714 (-6,l l)  
-0.811 201425781 150 7.346914476556023 (-5,11) 
-0.620884146211 136 7.333960813623058 (-4,11) 
-0.458329400981613 7.322397412814130 (-2511) 
-0.313613511426339 7.311689634578599 (-2, l l )  
-0,179952252749314 7.301432693 193 145 ( - I ,  11) 

References 

[l] Belhe H 1931 Z. Php 71 205 
121 Takahashi M 1971 Prng meor: Phys. 46 401 
[3] Faddccv L D and Takhtajan L 1981 Zap. Nouch. Snnin LOMl 109 134 
[4] Gaudin M 1983 Lo Foncrion d'Oude de Berhe (Paris Mason) 
151 Vladimirav A A I984 Phys. Len. 105A 418 
[6] Hodgson R P and Parkinson 1 B 1985 1. Phys. C: Solid Slars Phys. 18 6385 


